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Abstract. In this paper we report results showing that surface relaxations may profoundly alter
the equilibrium growth morphology of crystals. This may result in growth forms not predicted by
the Wulff plot. Surface relaxations and polarization fluctuations produce extra terms in the free
energy of a growing crystal nucleus which combine with the surface energy to produce an effective
surface energy which depends on the size and shape of the crystal. We consider the case of the
growth of nuclei of a crystal with cubic symmetry and show that if the surface relaxations are
large enough then small nuclei will grow into platelets, although large nuclei still grow into large
three-dimensional crystals. We show by considering materials with the perovskite structure that
this effect may occur in real materials.

1. Introduction

In this work we investigate how two parallel surfaces of a small crystal can interact to produce
platelet growth morphologies from crystals with cubic symmetry. The main interaction arises
from the relaxation of the atomic layers parallel to the surface along directions normal to the
surface, and for two close parallel surfaces the relaxation strain fields of both surfaces will
overlap. This leads to a free energy that depends on the separation of the surfaces, and if
the effect is large enough (or put another way, if the constant term in the surface energy is
low enough) it can produce a symmetry breaking effect on the growth morphology allowing
platelets to grow. Towards the end of the paper we estimate the size of the relaxation effect
from experimental data for materials with the perovskite structure and show that it can be large
enough to provide an explanation for platelet formation in real systems. We will contrast the
results with other models of growth morphology.

This point of view is different from traditional models of nucleation and growth, which
are based on the interaction of two terms in the free energy of a crystal nucleus. The first is the
bulk free energy that drives the crystallization process. This term scales with the volume of the
nucleus. The second term is surface energy. This term destabilizes small nuclei so that they
dissolve. It scales with surface area. The interaction of the two terms leads to a critical nucleus
size, beyond which a nucleus is large enough for the surface energy term not to destabilize it.

Crystalline solids are anisotropic. Because of this different surfaces have different surface
energies depending on their (hkl) indices. The growth morphology of a crystal is determined
from the condition that for a given crystal volume the total surface energy must be a minimum.
A graph of the surface energy as a function of the direction of the normal of the surface is used
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to determine equilibrium growth forms. Such a graph (or a two-dimensional slice from it) with
the surface energy plotted in the direction of the normal of the surface is called a Wulff plot.
The Wulff plots of most crystals have sharp cusps. The locations of these cusps correspond
to planes with low Miller indices. The points of these cusps denote surfaces with very low
surface energies. These surfaces are the ones that the crystal will use as its faces in order to
minimize its surface free energy.

Obviously the symmetry of the Wulff plot must be at least the same as the point group
symmetry of the crystal since surfaces related to each other by symmetry must have the same
surface energy. Cusps must occur in symmetry related groups. One cusp implies the existence
of others in directions related to that of the original cusp by the point group symmetry of the
crystal. This means that the faces of a crystal must be related to each other by symmetry. For
example, diamond, which as mentioned above forms octahedral crystals, has planes related
by symmetry to the (111) plane as its lowest energy planes. To determine exactly the crystal
growth morphology that will minimize the surface energy of a crystal from the Wulff plot a
graphical construction called the Wulff construction is used. See for example Hartman (1973)
for more information about the Wulff construction.

However crystals do sometimes grow in forms that are not consistent with the underlying
symmetry of the lattice. For example silver halide crystals grow in a range of habits. As
well as the cubic and cubic octahedral habits, which are consistent with the underlying cubic
symmetry, tabular habits are also observed. These habits are explained as being due to twinning
(Bögelset al 1997, 1999). In this paper we present results showing that equilibrium platelet
growth may be brought about by a surface energy which depends on the separation of parallel
surfaces

The Wulff plot contains assumptions about the nature of surface energies built into it.
The most important of these assumptions is that the surface energy depends only on the
Miller indices or the direction of the normal of the surface. Thermodynamically this must be
true for sufficiently large crystals. The success of the Wulff plot in determining the growth
morphologies of crystals indicates that this is often a good assumption. In this work we show
that surface relaxations and polarization fluctuations in crystals result in terms in the free energy
of a crystal that depend on the separation of parallel surfaces. Putting all the surface terms in
the free energy together gives us an effective surface energy. In the limit of infinite thickness
the effective surface energy tends towards the constant value used in the Wulff plot. Crystals
grown from large nuclei will only experience the constant value of the surface energy and thus
will grow into forms predicted by the Wulff plot. For crystals grown from small nuclei the
effective surface energies may be substantially different from the Wulff plot values leading to
entirely different growth morphologies.

The first person to suggest that surface energies may be modified by the size of a nucleus
was Tolman (1949). He showed that as a consequence of the interface between a liquid drop
and its vapour having a finite thickness the curvature of the surface would affect the surface
energy. He derived a formula for the surface energy per unit area for a droplet of radiusr:

σ(r) = σ0

1 + 2δ/r
whereσ0 is the surface energy per unit area for a flat surface, andδ is the Tolman length; a
quantity of the order of the thickness of the interface. Howeverδ is an extremely difficult
quantity to measure experimentally and the temperature dependence and even the sign ofδ are
still the subject of debate (Baidakov and Boltachev 1999, Kalikmanov 1997, Granasy 1998).
Although our results also involve a size dependent contribution to the free energy in our case
it is due to the overlap of surface relaxations and polarization fluctuations rather than due to
the curvature of the interface.
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In this work we investigate surface effects in a one-dimensional slab. Firstly we look
at how the presence of surfaces modifies the phonon density of states (section 2). We take
the approach used in the rigid unit mode model for framework structures (Giddyet al 1993)
to take explicit account of how the surface leads to a loss of constraints on the motions of
surface atoms. This allows us to calculate the effect of the surface on the phonon density
of states, and hence allows us to determine a temperature dependent phonon surface energy.
This contribution to the surface energy scales directly with the surface area and so gives us the
temperature dependence of surface energies.

Secondly we investigate the effects of surface relaxations on the surface free energy of
the slab (section 3). Surface relaxations occur in systems where interactions between atoms
in next nearest neighbour unit cells are important. In these systems atoms in the surface layers
are not arranged in the same way as they are in the bulk because the forces on surface atoms
are not the same as those on atoms in the bulk. The configuration of atoms in layers near to
the surface that minimizes the free energy of the crystal is not the same as that of atoms in the
bulk. The surface relaxation may be described by a strain field, which decays exponentially
with distance from the surface. Strains are measured relative to a reference configuration in
which atoms close to the surface are arranged in the same way as atoms in the bulk. The free
energy change associated with a surface relaxation is negative. For small crystal nuclei the
strain fields of surface relaxations from different surfaces overlap. In our one-dimensional slab
surface relaxations from the opposite surfaces may overlap. When we calculate the contribution
to the surface energy from the surface relaxation we obtain two terms. The first term is negative
and scales directly with the surface area. The second term, as well as being proportional to the
surface area has a decaying exponential dependence on the separation of the surfaces.

Lastly we consider the effect of polarization fluctuations in the crystal nucleus and in the
medium surrounding it (section 4). These have already been studied in detail for slabs in the
context of surface melting (Lipowsky 1987). It has been shown that polarization fluctuations
make a contribution to the free energy that scales with the surface area and has, for slabs with
a large thickness, a power law dependence on the thickness. In the surface melting case the
free energy of the molten layer has both a term which depends exponentially on its thickness
and a term which at large thickness has a power law dependence on the thickness. In this case
for small thickness the exponential term dominates and for large thickness the power law term
dominates. We expect the same thing to happen in our system. However as we discuss in the
next section, whether or not a platelet growth morphology can occur depends on the form of
the surface energy for small values of thickness. Therefore we do not expect the polarization
term to have a role in modifying the growth morphologies of crystals.

In section 5 we extrapolate our results for the free energy of a slab to the case of a
rectangular parallelepiped nucleus. We investigate the form of this function and its stationary
values. In section 6 we discuss what growth morphologies it can produce. We consider the
possibilities of cubic, platelet and needle growth morphologies. We find, as expected, that the
possibility of a cubic growth morphology always exists. Needle growth cannot occur under
any of the circumstances we consider. Platelet growth may occur but depends on the initial
shape of the nucleus, and the behaviour of the surface energy for small values of thickness.

Having determined the conditions necessary for platelet growth morphologies we explore
the question of whether we can reasonably expect the effect to occur in real systems. Because
the condition for platelet growth morphologies depends on the behaviour of the surface energies
for nuclei with small thickness this means only the surface relaxation contribution to the surface
energy is important. In section 7 we consider the parameters of the surface relaxations of
materials with the perovskite structure. Here our aim is not to demonstrate that the platelet
formation mechanism may be applicable to these materials. Instead we investigate whether
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the parameters of surface relaxations in real systems are the right order of magnitude for the
platelet formation mechanism to work. Our results suggest that this is indeed the case.

2. Phonon surface free energy

In this section we look at the effect that the surface has on the phonon spectrum and how the
free energy is affected. We do this firstly by investigating how creating a surface increases
the number of low frequency phonon modes. The effect of a surface is to reduce the forces
constraining surface atoms to their places. This allows them to move more easily (that is with
less potential energy cost) than bulk atoms. This will lower the frequency of phonons whose
eigenvectors involve the motion of those atoms. The lowering of the frequency of the phonon
mode will lower the energy of the phonons in the mode. The number of phonons occupying
the phonon mode is given by Bose–Einstein statistics (see for example Dove 1993, Landau
and Lifshitz 1980)

N(ω) = 1

exp(ω/T )− 1
.

Decreasing the frequency of the phonon mode will increase the number of phonons occupying
the mode. The increase in the total number of phonons will lead to an increase in the entropy
of the system. Thus, throughA = E − T S, the free energy of the system will be lowered
by the presence of surfaces. This is compared to the same system but with periodic boundary
conditions.

Put more simply, the role of the surface will be to remove some of the constraints on the
motions of the surface atoms. This is conveniently analysed using the rigid unit mode (RUM)
model, which is explicitly based on the balance between the number of constraints and the
number of degrees of freedom of a system containing rigid polyhedra (such as the octahedra
in the perovskite structure) that are linked together. This model has been successfully used
to explain many features of phase transitions in silicates and other ceramics (Hammondset al
1996, Doveet al 1995). It has been extended to give an explanation of negative thermal
expansion in ceramics such as ZrW2O8 (Prydeet al 1996, 1998) and silicates such as quartz
(Welcheet al 1998), zeolite catalysis (Hammondset al 1997, 1998) and the low energy
dynamics of silica glass (Doveet al 1997, Trachenkoet al 1998).

RUMs are a special class of phonon modes, and are defined as the phonon modes with
eigenvectors that do not involve any distortion of the structural polyhedra (such as SiO4

tetrahedra or TiO6 octahedra) themselves, with the polyhedra effectively moving as rigid
units. Because there is a high energy cost involved in distorting these structural polyhedra,
the RUMs will have lower frequencies than other phonons and will accordingly make a larger
contribution to the free energy. Therefore to a first approximation the free energy of a system
will be proportional to the number of RUMs in the system. This will be exactly valid in the
limit that the frequency of a RUM is much less than the frequency of all other phonon modes.
If we suppose that all RUMs have frequencies of approximatelyωRUM and the system has
NRUM RUMs then the free energy of the system will be approximately

NRUMT ln

[
1− exp

(
− ωRUM

T

)]
.

At this level of approximation we can deduce the effect of the surfaces on the free energy by
calculating the effect of the surfaces on the number of RUMs.

The effect of the surface on the number of RUMs is explained most easily with reference
to some general considerations. A system of linked polyhedra has a total ofF degrees of
freedom (actually six per polyhedron, three translational and three rotational). There will
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also be a number of constraints,C, which act to tie together the corners of linked polyhedra.
Specifically, one linkage adds three constraints to the overall count. The number of RUMs is
equal toF −C (Thorpe 1995). For a crystal made of linked tetrahedra the most general way of
countingC leads to the result thatF − C = 0, but this does not account for symmetry which
will make some of the constraints degenerate, and it is found for many systems that symmetry
allows a significant number of RUMs. A lattice dynamical method of determining the number
of RUMs for a system with periodic boundaries has been described elsewhere (Giddyet al
1993, Hammondset al 1994). This is a numerical method that automatically accounts for the
effect of symmetry on the overall number of constraints. The issue of symmetry is discussed
in more detail elsewhere (Giddyet al 1993, Dove 1997).

The effect of a surface is to leave some corners of surface polyhedra unconnected, reducing
the number of constraintsC by an amount that is proportional to the surface area. This
increases the number of RUMs by the same amount. In our simplified model the free energy
is proportional to the number of RUMs. The number of RUMs will beAV + BS, whereV is
the volume of the system andS is the surface area.A andB must be positive. This approach
shows that there will be a bulk phonon free energy and a surface phonon free energy. There is
a (negative) contribution to the free energy that is proportional to the surface area.

As part of this work we have investigated the effects of the presence of free surfaces
on the number of RUMs and the crystal free energy on the following structure types: cubic
perovskite, hexagonal tridymite, cubic cristobalite and cubic sodalite. These were chosen
because they have quite different RUM behaviours. perovskite has lines of RUMs ink-space.
Tridymite and cristobalite have planes of RUMs. Sodalite has at least one RUM at each point
in k-space (Hammondset al 1996). We created periodic supercells consisting of slabs ofn

primitive unit cells stacked in thec direction. We variedn between 2 and 20. The slabs have
translational periodicity in thea andb directions, but have free (001) surfaces. We calculated
the frequencies of the phonon modes at 1000 randomly chosen points in the effectively two-
dimensionalk-space.

In the limit of high temperatures the phonon free energy is given by

A = 6mT

〈
ln
ω

T

〉
.

The prefactor is 6 rather than 3 because we are dealing with rigid units with six degrees of
freedom rather than atoms, which only have three degrees of freedom.m is the number of
rigid units in the unit cell. Angular frequencies and temperatures are measured in energy units
soh̄ = 1, kB = 1.

The meaning of the average is given, for a structure ofN unit cells, by〈
ln
ω

T

〉
= 1

6Nm

6Nm∑
i=1

ln

(
ωi

T

)
.

Summation is over all the phonon modes of the system. There is no practical problem with
calculating〈lnω〉 and subtracting lnT later.

The main problem with this approach is in handling the modes with zero frequency, since
the free energy equation requires the logarithm of the frequency. In a real crystal the RUMs
do not in fact have zero frequencies, just very low ones. Therefore we solved the problem by
adding 0.5 THz to each frequency. (Note that the frequency range for the phonon modes in
silicates, excluding the very high frequency modes involving stretching of bonds that are not
reproduced in our calculation, is 0–20 THz.)

The results show that the free energy analysis of the RUM systems we have investigated
shows that the free energy per unit volume varies withn asA + B/n. The first term scales
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Figure 1. This figure shows the value of〈lnω〉 for each structure as a function of number of layers.
Except in the case of perovskite where it was unnecessary 0.5 THz was added to each frequency to
deal with the problem of zero frequencies. The diamonds are the values calculated. The lines are
fits of the formA +B/n. As can be seen in each case the fit is good, except for the first few points
on the sodalite curve.

with the volume of the system and gives the bulk phonon energy. The second term gives a
contribution that scales with the surface size and gives the surface phonon free energy. In the
cases of perovskite, tridymite and cristobalite fits of this form agree with the data very well
and there is no evidence to support higher order terms in 1/n. However in the case of sodalite
there does appear to be a need for higher order terms. We show in figure 1 graphs of〈lnω〉 as
a function ofn for the structures mentioned above.

The surface contribution to the phonon free energy is:

1σ = 6mTβγ.

The parameters are:m the number of rigid units in a unit cell,β the coefficient of 1/n in
the expansion of〈lnω〉 as a power series in 1/n, andγ the number of unit cells per unit area
of surface. (Temperature is measured in energy units, i.e.kB = 1.) We give values of these
parameters for the substances in table 1.

The above results can easily be incorporated into the Wulff plot by allowing the surface free
energy to vary with temperature. To obtain an idea of the size of the effect consider perovskite.
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Table 1. Values of the parameters used for the calculation of the phonon surface free energies
for the various mineral structures. For the perovskite structureγ is calculated using the lattice
parameters of strontium titanate.

m β γ (1018 m−2)

Perovskite 1−0.328 6.6
High tridymite 4 −0.271 4.5
High cristobalite 8 −0.537 2.0
Sodalite 12 −0.212 1.3

Upon a temperature increase of 1000 K the surface energy decreases by 0.17 J m−2 (the lattice
parameters of strontium titanate have been used).

Granzio and Uccio (1997) calculated the free surface energy of YBCO at zero Kelvin as
σ = 0.8 J m−2 so this is quite a significant effect. In section 7 we show that small values of
the surface energy are needed for platelet formation to occur. At high temperatures the phonon
contribution to the surface energy may drive the surface energy below the critical value needed
for platelet formation.

We note that these calculations were performed for perfectly smooth surfaces, which will
not be a good representation of the situation in a growing crystal. The effect of rough surfaces
can be determined qualitatively by the constraint counting method discussed above. Clearly a
rough surface will have even less constraints than a smooth one. This in turn will give more
RUM phonon modes that will lower the surface free energy of the system. For this reason
the phonon contribution to the surface free energy may lower it even further than the above
calculations suggest.

3. Surface relaxations

The presence of a surface allows the system to lower its free energy by changing its
configuration, in a region near the surface, from its bulk configuration. This can be explained
in terms of forces. In the bulk of the material the forces on any plane are balanced. When the
material on one side of the plane is removed to create a free surface the force on that surface
is no longer balanced, i.e. there is a net force on the surface. The new equilibrium state of
the crystal has a region close to the surface which is strained with respect to the bulk. These
strains decay exponentially in the bulk with length scaleλ, the relaxation length. Note that to
obtain this result from elasticity theory the elastic free energy must contain terms depending
on the derivative of the strain, not just the strain itself.

The simplest model that shows surface relaxations is a set of crystallographic planes,
as shown in figure 2. Nearest neighbour planes and next nearest neighbour planes are
joined by springs (Houchmandzadehet al 1992). Displacements are only allowed in one
dimension.

We are interested in the case where the strain fields of relaxations emanating from each
surface overlap. Nearest neighbour planes are joined by springs with equilibrium lengtha

and spring constantq. Next nearest neighbour planes are joined by springs of equilibrium
lengthA and spring constantQ. The separation of the planes is given by{1i}. Conditions of
stability requireq > 0 andQ > −q/4 (Houchmandzadehet al1992). Should these conditions
be violated these systems show ferroelastic or antiferroelastic phase transitions, which may
be viewed as cases whereλ→ ∞. Thus systems which undergo such transitions have large
values ofλ close to their transition temperatures. In the bulk the separation of the lattice planes
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Figure 2. The simplest system that has surface relaxations is a set of planes joined by springs.
Both nearest neighbour and next nearest neighbour planes must be connected by springs in order
for there to be a surface relaxation. The set{1i} i = 0, 1, . . . , N is the separations of the planes.

is given byb:

b = qa + 2QA

q + 4Q
.

The choice of parameters for the nearest and next nearest neighbour’s spring constant
determines the qualitative form of the relaxation (see previous reference). IfQ < 0 then
the strain decays purely exponentially, i.e. all the planes move in the same direction when the
surface is allowed to relax. (Negative values ofQ are physically possible, for instance if the
interaction between planes is a Lennard-Jones type potential.) IfQ > 0 then the strain has an
exponential envelope but alternates in sign in each layer, i.e. adjacent atoms move in opposite
directions. This sort of surface relaxation is called a zigzag relaxation.

The total energy of the system after relaxation may be calculated exactly, and the bulk
energy (that of the unrelaxed system) can be subtracted off to leave a surface energy. The
surface relaxation energies are different in the casesQ > 0 andQ < 0. We give the results for
λ� 1 (λ is measured in unit cell lengths); they are first order in the displacements and only the
first exponential term is kept. We give the derivation of these in appendix A. The exponential
term for relaxations withQ > 0 alternates in sign withN , but in our model of equilibrium
growth, given in the next section, we assume that the system only feels the envelope. The sign
of the exponential term is taken to be negative all the time.

Q < 0

λ =
√
− Q

q + 4Q
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1V = − 2Q2(2b − A)2
[q + 2Q−Q/λ]

+
4Q3(2b − A)2

λ[q + 2Q−Q/λ]2
exp

(
−N
λ

)
Q > 0

λ =
√
Q

q

1V = −2Q2(2b − A)2
[q + 2Q/λ]

− 4Q3(2b − A)2
λ[q +Q/λ]2

exp

(
−N
λ

)
.

As mentioned above in theQ > 0 case the exponential term alternates in sign with the addition
of each layer and should be multiplied by(−1)N . To see why this is the case consider the
overlap of two zigzag relaxations emanating from two surfaces. In order for them to interfere
constructively,N , the number of planes in the chain, must be even. This case will have lower
energy than the case whereN is odd and the two relaxations interfere destructively.

The exponential terms depend on the separation between the surfaces, and so cannot be
incorporated into the Wulff plot.

Values for the parameters used can be calculated from interatomic potentials. In this work
rough values are estimated from experimental and theoretical data to see whether the effects
due to the surface relaxation described in section 6 are likely to occur.

4. Polarization effects

In this section we consider the effects of van der Waals interactions. These have been studied
in the context of surface melting phenomena (Lipowsky 1987, 1985, Conrad 1992) and wetting
(Lipowsky 1985, Widom 1978). Surface melting occurs in some metals at temperatures just
below the melting temperature. A thin disordered layer forms on the surface. The free energy
of a liquid layer of thicknessz can be calculated using the Landau theory of first order phase
transitions (Lipowsky 1987)

A(z) = γSL + γLV + z3 + (γSV − γSL − γLV ) exp

(
−2z

λ

)
whereγSL is the surface energy of the solid–liquid interface,γLV is the surface energy of the
liquid–vapour interface andγSV is the surface energy of the solid–vapour interface.3 is the
excess free energy of bulk liquid compared to bulk solid andλ is the correlation length of the
liquid. The above form of the free energy is valid for small values ofz where the free energy
of the interface is dominated by short range interactions. For larger values ofz long range van
der Waals interactions become important. Van der Waals interactions are due to correlated
fluctuations in electrical polarization. For two atoms separated by a large distancer their van
der Waals interaction energy is given by−ε(λ/r)6 if retardation effects are neglected.

For condensed bodies the van der Waals interaction is more complicated than this. The
van der Waals energy per unit area of a slab suspended in some medium is given byWz−2

whereW is the Hamaker constant. Again retardation effects are neglected. For a monatomic
liquid layer on a solid surfaceW is given by

W = π

12
nL(nS − nL)ελ6.

nS andnL are the number densities of atoms in the solid and liquid respectively.ε andλ are
the parameters of the two-atom interaction. If the solid is denser than the liquid, as is usually
the case,W will be positive. However in generalW can have either sign. So for large values
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of zA(z) is given by

A(z) = γSL + γLV + z3 + (γSV − γSL − γLV ) exp

(
−2z

λ

)
+
W

z2
.

The crossover between these two types of behaviour has been observed experimentally (Pluis
et al 1989).

In our system, which consists of a solid slab in contact with a liquid or vapour, we
expect polarization contributions to the surface energy to be important when the system is
large enough. For a solid slab suspended in a liquid the Hamaker constant is given by
W = −(π/12)(nL − NS)2ελ6 (Lipowsky 1985). We expect the surface energy therefore
to be given by

σ(z) = σ0 + f (z)

lim
z→0

f (z) ∝ exp

(
− z

λ

)
lim
z→∞ f (z) ∝

1

z2
.

However as we demonstrate in section 6 it is the properties of the surface energy for small
values ofz that determine whether a change in the growth morphology occurs or not. Therefore
changes in the growth morphology are entirely attributable to the surface relaxation and not to
polarization effects.

5. Free energy of a nucleus

In this section we consider how to extend our results for a slab, a one-dimensional problem,
to the case of a growing crystal nucleus, a three-dimensional system. We consider nuclei with
{001} type surfaces. The resultant free energy may be interpreted as having a bulk term and a
surface term as before. However as a result of polarization and surface relaxations contributions
to the surface energy it no longer dependent solely on the surface area but also on the separation
of opposite surfaces. We investigate the behaviour of the free energy as a function of the size
and shape of nuclei for a general surface energy, which increases monotonically to a (positive)
constant value as a function of the separation of surfaces.

We consider the free energy of the nucleus of a faceted crystal of the cubic system. We
assume for simplicity that the Wulff plot of the crystal is such that we only need to consider
surface planes related to the(001)plane by cubic symmetry. Such a crystal will be a rectangular
parallelepiped with edge lengthsx, y andz. Ignoring polarizations and surface relaxations the
free energy of the nucleus will be

A(x, y, z) = 2σ(xy + yz + zx)− θxyz
whereσ is the local surface energy per unit area for an(001) surface andθ is the bulk free
energy per unit volume. If the non-local contribution to the surface energy per unit area of a
slab from polarizations and surface relaxations isf (L) then the full free energy of a nucleus
will be

A(x, y, z) = 2σ(xy + yz + zx) + xyf (z) + yzf (x) + zxf (y)− θxyz.
For simplicity we can choose our units of energy so that 2σ is one. This gives us

A(x, y, z) = (xy + yz + zx) + xyf (z) + yzf (x) + zxf (y)− θxyz. (1)

In the discussion below we assume thatf (x) is a monotonically increasing function.f (0)
is negative but finite and asx approaches infinityf (x) monotonically approaches zero. This
will be the case when the Hamaker constant (discussed in section 4) is negative.
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We look for points at whichA(x, y, z) is stationary and discuss the expansion of the
function about those points. It can be shown that the stationary points ofA satisfy the relation
A(x, y, z)

xyz
= f ′(x)− f (x)

x
− 1

x
= f ′(y)− f (y)

y
− 1

z
= f ′(z)− f (z)

z
− 1

z
.

The equationf ′(a)− f (a)/a− 1/a = const may have one, two or three solutions depending
on the value of the constant and the form off (x). If the form off (x) is known then the above
equation can be used to determine the possible location of stationary values.

We investigate further the stationary values ofA and their expansion along the line
x = y = z. Stationary points along this line are given by

0= 2x(1 +f (x)) + x2(f ′(x)− θ).
One solution is obviously atx = 0. The number of other solutions depends on the exact form
of f (x). The number of other stationary values depend on the exact form off (x). They are
summarized in table 2 and graphs ofA(x, x, x) are shown in figure 3.

Table 2. The number of stationary values ofA(x, y, z) along thex = y = z line depends on
the exact form of the size dependent part of the surface energyf (x). This table summarizes the
conditions necessary for there to be one, two and three stationary values along that line.

Number of stationary values along the line
x = y = z Condition(s)

1 1 +f (0) < 0
max[2(1 +f (a)) + a(f ′(a)− θ)] < 0

2 1 +f (0) > 0
3 1 +f (0) < 0

max[2(1 +f (a)) + a(f ′(a)− θ)] > 0

To determine the nature of these stationary values we find the (quadratic) expansion ofA

about these points. The expansion ofA(x, y, z) about a stationary point at(x, y, z) is given
by

A(x +1x, y +1y, z +1z)− A(x, y, z)

= 1

2
[1x1y1z]


∂2A

∂x2

∂2A

∂x∂y

∂2A

∂x∂z

∂2A

∂y∂x

∂2A

∂y2

∂2A

∂y∂z

∂2A

∂z∂x

∂2A

∂z∂y

∂2A

∂z2


[
1x

1y

1z

]
.

The above matrix can be diagonalized by a co-ordinate transformation. The diagonal elements
of the matrix are then its three eigenvalues. In the case wherex = y = z the matrix of
the quadratic form is diagonalized in a cylindrical polar co-ordinate system (ξ, ζ, ψ). ξ is a
coordinate along thex = y = z line andζ is a coordinate directed perpendicular to this line;ψ

is the angle in the plane perpendicular to thex = y = z direction. The expansion ofA(x, y, z)
about a stationary point at(x, x, x) is given by

A = A0 +
λξ

2
ξ2 +

λζ

2
ζ 2

λξ = ∂2A

∂x2
+ 2

∂2A

∂x∂y

λζ = ∂2A

∂x2
+ 2

∂2A

∂x∂y
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Figure 3. This figure shows the free energy of a cubic nucleus as a function of edge lengthr. As
shown, which of the three possible shapes the curve has is determined by the values of the two
parametersη andθ . (a) Case 1, a minimum at the origin and a maximum. (b) Case 2, a maximum
at the origin followed by a minimum then a maximum. (c) Case 3, a single maximum at the origin.
As is noted in the text in cases 2 and 3 cubic nuclei do not necessarily remain cubic as they grow
so these graphs do not provide a complete picture of the nucleation and growth of nuclei.

A0 = A(x, x, x)
∂2A

∂x2

∣∣∣∣
(x,x,x)

= x2f ′′(x)

∂2A

∂x∂y

∣∣∣∣
(x,x,x)

= 1 +f (x) + 2xf ′(x)− xθ.

The value ofλξ can be determined by inspection of figure 3. Additional information can be
obtained from the condition that the trace of a matrix must be equal to the sum of its eigenvalues.
This gives us

λξ + 2λζ = 3x2f (x).

Sincef (x) is a monotonically increasing function the RHS is always negative. This allows
us to deduce that (i) none of the stationary points along thex = y = z line is a minimum
since that would require bothλξ andλζ to be positive and (ii) ifλξ is positive thenλζ must be
negative.

6. Growth of nuclei

In this section we present both analytic and numerical investigations of the possible growth
forms produced by the free energy given in equation (1). We find that a cubic growth
morphology is always possible, but depending on the exact form off (x) a platelet
growth morphology may also be possible. We use a simple model in which the growth rate
of each face of the nucleus is proportional to the decrease in the free energy caused by that
growth.

For a nucleus of sidesx, y, z we can define a growth vector fieldG(x, y, z). This vector
is given by

G =
(

dx

dt

dy

dt

dz

dt

)
.

G gives the rate at which the crystal grows in each direction. We choose a simple form forG

in which the growth rate of the crystal depends on the free energy gradients and the size of the
faces

G ∝
(
− 1

yz

∂A

∂x
− 1

zx

∂A

∂y
− 1

xy

∂A

∂z

)
.
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Units of time can be chosen so that the constant of proportionality is unity.

G =
(
− 1

yz

∂A

∂x
− 1

zx

∂A

∂y
− 1

xy

∂A

∂z

)
.

This growth model is based on the idea that a system evolves in such a way as to locally decrease
its free energy. This is the same idea that underlies the idea of nucleation, i.e. a pre-critical
nucleus is one which can locally lower its free energy by dissolving and a post-critical nucleus
is one which can locally lower its free energy by growing.

Using this equation forG we consider the possible outcomes of the growth of a nucleus;
these outcomes are summarized in table 3. The possible outcomes we consider are dissolution,
needle growth, growth into platelets and the growth of macroscopic cubes. We find that needle
growth is always impossible and cubic crystal growth can always occur. Whether nuclei can
dissolve or grow into platelets depends on the form off (x) nearx = 0. One other possibility
that we can immediately discount is that nuclei stop growing at some finite size. For this to
be the case we must find a local minimum inA(x, y, z). However iff (x) is a monotonically
increasing function then we can prove that no such minima exist. The condition for a minimum
is that once a stationary point has been found and the quadratic expansion about that minimum
has been diagonalized then the three diagonal elements must all be positive. This can be shown
to be impossible since the trace of a matrix is invariant on changes of the co-ordinate system.
Using this we can write

λ1 + λ2 + λ3 = ∂2A(x, y, z)

∂x2
+
∂2A(x, y, z)

∂y2
+
∂2A(x, y, z)

∂z2

= ∂2f (x)

∂x2
+
∂2f (y)

∂y2
+
∂2f (z)

∂z2

whereλ1, λ2 andλ3 are the diagonal elements of the diagonalized matrix, i.e. the eigenvalues
of the matrix. Sincef (x) is a monotonically increasing function its second derivatives are
negative definite. Therefore the sum of the three eigenvalues must be negative so it is impossible
that the three eigenvalues can all be positive.

To find out whether small nuclei dissolve or not we consider the behaviour ofG for
x, y, z→ 0. In this limitG is given by

G = −(1 +f (0))

[
1

y
+

1

z

1

x
+

1

z

1

x
+

1

y

]
.

If 1 + f (0) > 0 then small nuclei dissolve because they have not reached a critical size. This
is consistent with nucleation and growth theory. If however 1 +f (0) < 0 then small nuclei
grow instead of dissolving. The reason for this is that in this case the surface energy of a small
nucleus is negative due to the surface relaxation contribution so it cannot provide a barrier to
nucleation.

To find out whether cubic nuclei can form we considerG in the limit x, y, z→∞. This
gives us

G = θ [1 1 1]

so large cubic nuclei are always stable, irrespective of the form off (x).
Next we consider the stability of a platelet nucleus. To do this we investigate the form of

G for x, y →∞ andz→ 0. In this case we have

G = −
[

1 +f (0)

z

1 +f (0)

z
f ′(0)− θ

]
.

The conditions for platelets to be stable are 1+f (0) < 0 andf ′(0)−θ > 0. The first condition
means that the surface energy for platelets must be negative. This means that the large surface
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Table 3. Here we summarize the possible fates of a small crystal nucleus depending on the form of
f (x). A cubic growth morphology is always stable. Small nuclei dissolve if their surface energy
is positive but cannot dissolve if it is negative. Platelets are stable if the surface energy of a thin
platelet is negative and if the platelet cannot decrease its free energy by becoming thicker. Note:
these conditions for determining possible growth morphologies are not entirely the same as the
conditions determining the number of stationary values along thex = y = z line summarized in
table 2.

Possible morphologies Condition(s)

Cubes or dissolve 1 +f (0) > 0
Cubes or platelets 1 +f (0) < 0

f ′(0)− θ > 0
Cubes only 1 +f (0) < 0

f ′(0)− θ < 0

area of a platelet is thermodynamically desirable. The second condition can be understood by
considering the change in the free energy of a platelet on an increase in thickness. The surface
energy will increase, not because of the change in surface area but because of the change in
thickness. The bulk free energy will decrease because of the increase in volume. The second
condition for the stability of the platelet requires that the increase in surface energy must be
larger than the decrease in bulk energy.

Finally we consider the stability of needle shaped nuclei. To do so we look at the form of
G for z→∞, x, y → 0. Then we have

G = −(1 +f (0))

[
1

y

1

x

1

x
+

1

y

]
.

If 1 + f (0) > 0 then needles become shorter and eventually dissolve. If 1 +f (0) < 0 then
needles become fatter and eventually become either platelets or cubes. We can also discount
the possibility of needles with a large cross sectional area. The condition for these to be stable
is that there is a minimum inA(x, y,∞). The same arguments that were used above to show
that there were no minima inA(x, y, z) can be used to show that there are no minima in
A(x, y,∞).

These results show that it is the form off (x) near x = 0 that determines growth
morphologies. This means that the surface relaxation contribution tof (x), rather than the
polarization contribution, is important in determining growth morphologies.

For more insight into how nuclei grow under the influence of a size dependent surface
energy we plot numerical results for the growth fieldG using the free energy

A(x, y, z) = xy + yz + zx − η(xy e−z + yz e−x + zx e−y)− θxyz.
f (x) only has contributions from surface relaxations but we have demonstrated above that
polarization contributions do not affect growth morphologies. In this casef (x) = −η e−x

andf (0) = −f ′(0) = −η. We plotG for three cases. Firstly we haveη = 0.5, η = 1. In
this case the possible outcomes of growth are cubes and dissolution. There are two stationary
points on thex = y = z line. Secondly we haveη = 5, η = 0.7. The possible outcomes of
growth are platelets and cubes. There are three stationary points along thex = y = z line.
Thirdly we haveη = 5, η = 1.2. As before the possible fates of a crystal nucleus are cubes
and platelets. However we only have one stationary point along thex = y = z line. These
three cases by no means exhaust the possible topologies of the growth field.

G(x, y, z) is a three-dimensional vector field in a three-dimensional space. This makes
it very difficult to represent on a two-dimensional piece of paper. In order to do so we take
three slices through the field. The space in which the field exists represents thex, y andz
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Figure 4. The growth field of a nucleus is a three-dimensional vector field in a three-dimensional
space. It is very difficult to represent such a field on a two-dimensional piece of paper. In order
to obtain an idea of the field we take slices of it. That is we take a plane, calculate the field
on that plane and project the vectors onto that plane. The planes we have chosen are (i) ADHE
which corresponds to cubic nuclei, (ii) ABDC which corresponds to very thin, platelet nuclei and
(iii) EFHG which corresponds to very thick nuclei. In figures 5 to 7, part (a) shows the growth field
projected onto the plane AEHD, part (b) shows the growth field projected onto the plane ABDC
and part (c) shows the growth field projected onto the plane EFHG.

dimensions of the parallelepiped nuclei. These slices correspond to only considering certain
shapes of nuclei. Firstly we take a slice corresponding to cuboid nucleix = y. Secondly we
look at platelet nucleiz = 0.3. Lastly we consider very thick nucleiz = 4.5. We calculate the
growth field on these planes, then project the vectors obtained onto the plane. The resulting
two-dimensional vectors are then normalized. Taken together these slices allow us to picture
the vector field and allow us to determine the nature of stationary points.

In figure 4 the three planes described above are ABDC, AEHD and EFHG. On the diagram
the point A is at co-ordinates (0.3, 0.3, 0.3) and the point H is at co-ordinates (4.5, 4.5, 4.5). In
each of the cases considered the point H lies beyond all the stationary values of thex = y = z
line. Figures 5–7 show the growth field plotted in for the three cases described above. The
letters at the corners of the plots are the same as those in figure 4.

Figure 5 corresponds to the usual nucleation and growth picture. Small nuclei dissolve,
but sufficiently large nuclei grow into macroscopic cubes. Consider first figure 5(a). This
shows the growth field for nuclei which are constrained to be cuboidal (x = y 6= z). Point
A corresponds to a small cubic nucleus of side length 0.3λ. Point D corresponds to a square
platelet of thickness 0.3λ and breadth 4.5λ. Point E is a thin needle of length 4.5λ with a
square base of side 0.3λ. Point H is a large cubic nucleus of side length 4.5λ. The line AH
corresponds to cubic nuclei of increasing size. The line AE corresponds to square platelets of
the same thickness but increasing breadth, beginning at A as very small cubes. The line EH
corresponds to square platelets of increasing thickness ending up at H as large cubes. The line
AE corresponds to needles of increasing height but the same base size, beginning at A as small
cubes. The EH line corresponds to square based needles, with the base increasing in size until
the nucleus becomes a cube at H. Along the line ED the needle nucleus decreases in height
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(a) (b)

(c)

Figure 5. η = 0.5,θ = 1. (a) This plot shows a typical nucleation and growth picture. Only nuclei
in the top right part of the diagram tend to grow. These form large cubic crystals. Other nuclei
dissolve. The saddle point approximately in the centre corresponds to the maximum in figure 3(a).
Thin needles dissolve, thin platelets seem only to dissolve if they are small enough. Large platelets
grow into cubic crystals. (b) This plot shows that the broad faces of platelets tend to shrink, which is
what we expect from the previous diagram. The smaller platelet nuclei dissolve away entirely, but
the larger nuclei thicken while their broad faces shrink and thus eventually become cubes. (c) Here
again we see that nuclei that are thin needles dissolve but larger nuclei continue to grow.

and increases in base size. Half way along the line ED intersects the line AH and the nucleus
is a cube. Past this point the nucleus height continues to decrease and its base continues to
grow until it ends up as a platelet at H.

The arrows show the way in which the crystal would grow if it were constrained to remain
as a cuboid as it grows. Looking along the cubic line, AH line the arrows change direction
about one third of the way along. Arrows along the first third of the AH line point towards A,
showing that small cubic nuclei tend to get smaller and dissolve. The arrows along the last two
thirds of the AH line point towards H showing that sufficiently large nuclei tend to grow. This
is consistent with the usual nucleation and growth picture. Close to the AE line the arrows
point down left. This shows that needle shaped nuclei tend to shrink both in height and base
size until they have dissolved. Close to the AD line the arrows point left showing that platelet
nuclei tend to shrink in breadth. The arrows close to A are tilting downwards showing that the
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(a) (b)

(c)

Figure 6. η = 5, θ = 0.7. (a) This plot shows a saddle point and a maximum on thex = y = z
line. (There is also a maximum at the origin.) These correspond to the minimum and maximum
in figure 3(b). This graph shows three features. Firstly, for nuclei in the top right portion of
the diagram, growth into large cubes as we saw before. Secondly, in the bottom right part of the
diagram, we see the growth of platelets. Lastly in the top left part of the diagram we see the apparent
formation of needles. However plot (c) shows that these needles grow into platelets. (b) This plot
shows that the broad faces of platelets tend to grow, so that they will eventually become square
platelets. (c) The saddle point in the bottom left corner corresponds to the needles seen in part (a).
This plot shows that the needles will grow into platelets. The maximum approximately in the centre
shows the growth of cubes.

thickness of platelet nuclei decreases as well. These nuclei will dissolve. Arrows closer to D
are tilted upward slightly showing that as the breadth of the nuclei decreases their thickness
increases. Following the path of the arrows shows that these nuclei will grow into macroscopic
cubes.

Figure 5(b) shows the growth field for the case of very thin nuclei (z = 0.3λ). Point A
is the same as that in figure 5(a), i.e. a small cubic nucleus edge length 0.3λ. Point D again
is the same as in figure 5(a), i.e. a thin platelet of breadth 4.5λ and thickness 0.3λ. Points B
and C both represent thin needles with square bases. The needles have a height of 4.5λ and
the base has an edge length of 0.3λ. The AB and AC lines are exactly the same as the AE line
in figure 5(a). The lines BD and CD are however not the same as the line ED in figure 5(a).
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(a) (b)

(c)

Figure 7. η = 5, θ = 1.2. (a) This plot does not show the maximum and saddle point of the
previous case. However it does still show the other features of the previous plot, that is platelet and
cube growth as well as apparent needle growth which as before turns out to be unstable with respect
to platelet growth. (b) This plot shows that platelets still grow as in the previous case. (c) As before
this plot shows that needle growth is unstable with respect to the formation of platelets.

Although along both paths a needle turns into a platelet the transformation between the two is
different. Along the path ED the height of the needle decreases while the edge length of its
square base increases. Along the paths BD and CD the height of the needle remains the same
but one edge of its base increases. Eventually this edge of the base is as large as the height of
the original needle and we have a platelet.

All the arrows in this plot point down and left showing that platelet and needle nuclei tend
to shrink. However as we saw in figure 5(a) large platelet nuclei thicken as their large face
shrinks. That means that this graph cannot be interpreted as all platelet and needle shaped
nuclei dissolving because the growth field has an extra dimension.

In figure 5(c) point E is the same as point E in figure 5(a) and corresponds to a square
based needle. Point H is again the same as in figure 5(a) and corresponds to a cube, edge
length 4.5λ. Points F and G both correspond to square based platelets. The lines EF and EG
are equivalent to the lines BD and CD in figure 5(b). Along lines FH and GH the thickness of
the platelets increases until the platelets have turned into cubes.
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The arrows along the EF and EG lines point towards E, suggesting that platelets tend to
turn into needles. However we know from figure 5(a) and (b) that in fact platelets tend to
shrink into less broad platelets so what we are seeing here is an artefact from projecting the
three-dimensional growth field onto a two-dimensional plane. All the arrows in the top right
of the plot are pointing in the general direction of H showing that these nuclei tend to grow.

In this case we could have formed a good idea of what the growth field looks like just from
considering figure 5(a). However for the systems in which surface relaxations are large shown
in figure 6 and figure 7 this is not the case. For instance in figure 6(a), close to the AE line we
see a line of arrows pointing directly up. This suggests that we have needles of constant base
size growing in height. But looking at figure 6(c) we see that these needles are unstable and
grow into platelets.

The plots in figure 6 show a departure from the growth morphology predicted by the Wulff
plot. Although sufficiently large nuclei form cubic crystals as in the case then the surface
relaxation is unimportant (figure 5), we also see that nuclei which would have dissolved now
grow into platelets. In this case the stability of the cubic line has changed. As before large
cubic nuclei are stable. However small cubic nuclei are unstable. Small nuclei now grow
into platelets, whether they started off as needles, platelets or cubes. There are no nuclei
that dissolve. We interpret this as meaning there is no nucleation barrier to the formation of
platelets. These flow diagrams show that the minimum in figure 3(b) cannot be interpreted
as the stabilization of small nuclei. The diagrams show that the minimum is in fact a saddle
point.

The plots in figure 7 show much the same behaviour as the plots in figure 6, except along
thex = y = z line. The outcomes are the same: nuclei end up as either cubes or platelets.
Again for small nuclei the cubic line is unstable. Figure 3(c) cannot be interpreted as all nuclei
growing into macroscopic cubes with no nucleation barrier. Instead, as before, small nuclei
grow into platelets.

7. Numerical estimates

We now need to address the question of whether this effect can occur in practice. In this work
we do not attempt to find a material in which this mechanism for platelet growth occurs but
merely to demonstrate the possibility that such a material may exist. That is, we look at the
values of the parameters of the surface relaxation and the surface energy needed to produce
platelet growth and consider if they are comparable with those found in real materials. We
considered the perovskite class of materials, in which surface relaxations are known to be
significant. We considered the perovskite materials lead titanate (PbTiO3), strontium titanate
(SrTiO3), barium titanate (BaTiO3) and lanthanum aluminate (LaAlO3). These materials all
have zigzag relaxations:q > 0 andQ > 0. Out of the two conditions that need to be met
for platelet formation to take place, the secondη > θ can always be met by growing the
crystals with a small enough degree of supersaturation or supercooling. The first condition
η > 1 depends on the relative sizes of the surface interaction term and the constant term in the
surface energy. By considering the size of the surface relaxations and the surface energies in
perovskite materials we show that the effect may occur in practice. The results of this section do
not demonstrate that we can expect platelet growth to occur in any of the materials considered.
What they do show is that the effect described above cannot be ruled out as impossible for real
materials.

As we showed in the previous section the parameter which determines whether equilibrium
platelet growth is feasible isη. This parameter must have a value higher than one for equilibrium
platelet growth to occur.η is the ratio of the prefactor of the exponential term in the free energy
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to the surface energy. In the notation of the section on surface relaxations the equation forη

is:

η = 2Q3(2b − A)2
σλ(q +Q/λ)2b2

for the zigzag case whereσ is the surface energy, andλ is dimensionless as it is measured in
unit cell lengths.

We estimated the various quantities from data in the literature. Chrosch and Salje (1998)
give values ofλ for the above compounds. From these values, the lattice parametersb and the
C1111 elastic constants we obtainedQ andq. We calculated (2b − A) from the strain in the
first layer, which is given by(

u

b

)
f irst layer

=
(

Q

q +Q/λ

)
2b − A
B

for a system much larger thanλ (see appendix A). As a lower limit on the surface energyσ ,
we used the energy per unit area of a twin domain wall. We summarize these results in table 4.

Table 4. Values ofη for various perovskites. We could not find all the data we needed so some
values had to be interpolated from their values in other compounds. Only strontium titanate has an
η value large enough for platelet formation to take place. This is due to its very low value forσ .

PbTiO3 SrTiO3 BaTiO3 LaAlO3

λ 1.26a 1.55b 3.50c 5.00d

b (10−10 m) 3.96 4.00 4.00 3.80
C1111 (1011 Pa) 3.00e 3.48f 2.75f 3.00e

Q (N m−1) 25.66 31.54 26.96 28.22
q (N m−1) 16.16 13.13 2.20 1.13
ε (%) 2.00e 2.00e 2.00g 2.00e

(2b − A)/b (%) 2.85 2.12 0.73 0.48
σ (10−3 J m−2) 50.00a 1.30d 10.00d 28.00d

η 0.33 12.52 0.62 0.16

a Stemmeret al (1995).
b Cao and Barsch (1990).
c Tsaiet al (1992).
d Chrosch and Salje (1999).
e Estimated from values for other materials in the table.
f Lide (1997).
g Padilla and Vanderbilt (1997).

Table 4 shows that only strontium titanate has anη value large enough for platelet formation
to take place. However the values for PbTiO3 and BaTiO3 are not far away from the critical
value. This suggests that the effect reported here may occur in actual materials. Theσ values
we are using are those of twin domain walls rather than free surfaces. A calculation of the free
surface energy of YBCO at 0 K gave 800 mJ m−2 (Granzio and Uccio 1997). This is much
higher than the values given in the table. There are many factors that can bring this surface
energy down. The phonon contribution to the surface free energy can significantly reduce it as
we show in section 2. In crystallization we are usually dealing with a crystal in contact with
a solution or its melt, and this may reduce the surface energy substantially. A reconstruction
of the surface will also lower its free energy. We also expect that the surface relaxation may
be made larger by a layer of impurity atoms on the surface, which will alter the boundary
conditions of the surface relaxation equations.
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8. Conclusions

We have shown that surface relaxations and polarization fluctuations modify the surface
energies of small nuclei, producing an effective surface energy. This effective surface energy
depends on the separation between surfaces. For systems with large surface relaxations the
effective surface energy may be negative for very thin platelets. If this is the case then we
predict that the small nuclei will grow into platelets. These growth forms are not predicted by
the Wulff plot, which only determines the growth morphology of large nuclei. Lastly since
the effective surface energy of platelets is negative the surface energy will not be a nucleation
barrier to their formation.
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Appendix A. Calculation of surface relaxation energy

The notation used in this section is explained in figure 2. Here we calculate the results presented
in section 4.

Firstly we consider the caseQ < 0. The potential energy of the system is

V = q

2

N∑
n=0

(1n − a)2 +
Q

2

N−1∑
n=0

(1n +1n+1− A)2.

We find the minimum in the potential energy as the solution to the equations

∂V

∂1n

= 0 n = 0, 1, . . . , N.

This gives us the following equations to solve

0= q(10 − a) +Q(10 +11− A) (A1)

0= q(1m − a) +Q(1m−1 + 21m +1m+1− 2A) m = 2, 3, . . . N − 1 (A2)

0= q(1N − a) +Q(1N−1 +1N − A). (A3)

In this case there is an exponentially decaying relaxation (Houchmandzadehet al 1992).
We assume that the displacements associated with the relaxation vary slowly enough that a
continuum approximation can be made, i.e.

1n = b + u(xn)

whereb is the lattice parameter in the bulk

b = qa + 2QA

q + 4Q
(A4)

andu(x) is a slowly varying function ofx, with

xn = −N
2

+ n.

Equation (A2) becomes a differential equation foru

Q
∂2u

∂x2
+ (q + 4Q)u = 0.
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Equation (A1) and equation (A3) give boundary conditions foru.

(q + 2Q)u

(
−N

2

)
+Qu′

(
−N

2

)
= 1

2
Q(2b − A) (A5)

(q + 2Q)u

(
N

2

)
−Qu′

(
N

2

)
= 1

2
Q(2b − A). (A6)

In fact only one of these boundary conditions is necessary since the symmetry of the system
requires thatu(x) is an even function ofx, i.e. u(x) = u(−x). The only solution of the
differential equation with the correct symmetry is

u(x) = 0 cosh

(
x

λ

)
where0 is to be determined by the boundary conditions, andλ, the relaxation length scale, is
given by

λ =
√
−Q
q + 4Q

.

The condition thatu is a slowly varying function ofx can now be stated asλ� 1.
We calculate0 from the boundary condition equation (A5)

0 = Q(2b − A)
[(q + 2Q) cosh(N/2λ)−Q/λ sinh(N/2λ)]

.

Now we expand0 in a power series in the parameterξ , where

ξ = exp

(
N

2λ

)
.

This gives us

0 = 2Q(2b − A)
[q + 2Q−Q/λ]ξ

[
1−

(
q + 2Q +Q/λ

q + 2Q−Q/λ
)

1

ξ2

]
+ O

(
1

ξ5

)
.

Now we use these results to calculate the potential energy of the system in terms ofu. First
we expand the potential energy in powers ofu. Sinceu is very small (strains are in practice of
the order of 1%; see for example Padilla and Vanderbilt 1997) we can discard the term that is
second order inu.

V = q

2

N∑
n=0

(b + u(xn)− a)2 +
Q

2

N−1∑
n=0

(2b + u(xn) + u(xn+1)− A)2

V = q

2
N(b − a)2 +

Q

2
(N − 1)(2b − A)2 + q(b − a)

N∑
n=0

u(xn)

+Q(2b − A)
N−1∑
n=0

(u(xn) + u(xn+1)) + O(u2).

The first two terms are the potential energy of the unrelaxed system so these constitute the
bulk energyVB . Using equation (A4) we can eliminate many of the terms from the expansion
of V − VB .

V − VB = [q(b − a) +Q(2b − A)](u(x0) + u(xN)) + [q(b − a) + 2Q(2b − A)]
N−1∑
n=1

u(xn)

V − VB = [q(b − a) +Q(2b − A)](u(x0) + u(xN))

V − VB = −Q(2b − A)(u(x0) + u(xN))

V − VB = −2Q(2b − A)u(x0).
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The last line follows from the symmetry ofu. We substitute foru(x0) and expand in powers
of ξ .

V − VB = −2Q(2b − A)0 cosh

(
N

2λ

)
V − VB = −Q(2b − A)0

(
ξ +

1

ξ

)
.

Lastly we substitute for0

V − VB = − 2Q2(2b − A)2
[q + 2Q− A/λ]ξ

[
1−

(
q + 2Q +Q/λ

q + 2Q−Q/λ
)

1

ξ2

](
ξ +

1

ξ

)
V − VB = − 2Q2(2b − A)2

[q + 2Q− A/λ]
+

4Q3(2b − A)2
λ[q + 2Q−Q/λ]2ξ2

+ O

(
1

ξ4

)
.

This gives us the result given in section 2:

V − VB = − 2Q2(2b − A)2
[q + 2Q−Q/λ]

+
4Q3(2b − A)2

λ[q + 2Q−Q/λ]2
exp

(
−N
λ

)
.

Next we consider the caseQ > 0. In this case as before we obtain the equations (A1)–(A3).
Also the lattice parameterb is given by the same equation as before. However the relaxation
in this case is a zigzag relaxation. The lattice alternately expands and contracts but with an
overall exponential envelope. For this reason we cannot defineu in the same way as before
because in this case it would not be a slowly varying field and our continuum approximation
would not be valid. Instead we defineu by

1n = b + (−1)nu(xn).

Nowu is a slowly varying function ofx because we have taken the zigzag part of the relaxation
out. Thexn are defined as before. We can deduce the symmetry ofu(x) from the symmetry
of the system. The system has inversion symmetry about its centre. That is

1N/2+i = 1N/2−i .

This means thatu must be an even function ifN is even and an odd function ifN is odd. As
before we obtain a differential equation foru.

qu−Q∂
2u

∂x2
= 0.

This has solutions

u = 0 cosh
(x
λ

)
N even

u = 0 sinh
(x
λ

)
N odd

λ =
√
Q

q
.

The solutions foru are different depending on whetherN is odd or even becauseu has different
symmetries in these two cases. Apart from this the calculation proceeds in the same way as
before but with the new definition ofu.

The result for the potential energy is

V − VB = −2Q2(2b − A)2
[q +A/λ]

− (−1)N
4Q3(2b − A)2
λ[q +Q/λ]2

exp

(
−N
λ

)
.

We assume that during crystal growth the system only experiences the (negative) envelope.
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Appendix B. The effect of phase transitions onη and λ

In this section we consider how a ferroelastic phase transition affects the value of the parameter
η. We show that as the system is cooled toTC from aboveη decreases to zero. This result makes
sense because as mentioned before asT → TC , λ→∞. The surface relaxation goes all the
way through the material. It is no longer a surface effect but a bulk effect. The contribution it
makes to the surface energy must therefore be zero. This means that platelet formation, which
requiresη > 1, will not take place at temperatures near ferroelastic transitions.

Near a phase transition some of the parameters of the system shown in figure 2 above will
depend strongly on temperature. As we mentioned in section 2 our model has instabilities
that correspond to ferroelastic phase transitions. The stability conditions areQ > −q/4 and
q > 0. These conditions are explained by a calculation of the phonon spectrum of the system
by Houchmandzadehet al (1992).

ω2 = q sin2( 1
2kb) +Q sin2(kb)

wherek is the (one-dimensional) phonon wavevector.
To see how the parametersη andθ are affected by phase transitions consider the case

whereQ > 0. We consider the system in the region where the temperature is close toTC
but above it. In a soft mode phase transition the frequency of the soft mode has temperature
dependence

ω2 ∝ (T − TC)
(Dove 1997). WithQ > 0 the mode that softens is the one atkb = π/2. This mode has
ω2 = q. Soq must have the temperature dependence

q ∝ (T − TC).
This condition is the only one necessary for a phase transition so we can assume that all the
other parameters of the model vary more slowly thanq in the region ofTC . That isQ, σ , a,
A do not, to first approximation, vary in the region ofTC . Howeverλ andb are both functions
of q so these also depend on (T − TC). We calculate the behaviour ofη in the region ofTC
first. η is given by

η = 2Q3(2b − A)2
σλ(q +Q/λ)2b2

.

The temperature dependence of the parametersq, λ and (2b − A) is given by

q = q̄t
λ = λ̄t−1/2

b = 1

2
(2a − A)q̄t +

A

2
where

t = T − TC
TC

.

By substituting these into the equation forη we obtain its temperature dependence.

η = 2Q3((2a − A)/4Q)2q̄2t2

σ λ̄t−1/2(q̄t +Q/λ̄t−1/2)2(A/2)2

η = Qq̄2(2a − A)2
8σ λ̄(q̄t1/2 +Q/λ̄)2(A/2)2

t3/2

lim
t→0

η ∝ t3/2.
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Soη becomes very small as we approach the transition temperature. These equations are of
course only valid forT > TC . BelowTC the structure is different and all the parameters will
have different values.σ has a contribution from the surface relaxation, but it decreases to zero
as we approach the transition temperature.

Thet dependence ofθ can be written down almost immediately:

θ = r∗

2λ

θ = r∗

2λ̄t−1/2

θ ∝ t1/2.
Soθ becomes very small as we approach the transition temperature. This means that the bulk
free energyxyz/θ will be very large. This makes sense becausex, y, z are measured in units
of λ which is also very large near the transition temperature. The free energy per unit volume
θ−1 becomes very large because the unit volume is also very large.
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